
Package: RAppArmor (via r-universe)
November 2, 2024

Type Package

Title Bindings to AppArmor and Security Related Linux Tools

Version 3.2.5

Description Bindings to kernel methods for enforcing security
restrictions. AppArmor can apply mandatory access control (MAC)
policies on a given task (process) via security profiles with
detailed ACL definitions. In addition this package implements
bindings for setting process resource limits (rlimit), uid,
gid, affinity and priority. The high level R function
'eval.secure' builds on these methods to perform dynamic
sandboxing: it evaluates a single R expression within a
temporary fork which acts as a sandbox by enforcing fine
grained restrictions without affecting the main R process. A
portable version of this function is now available in the
'unix' package.

License Apache License 2.0

URL https://www.jstatsoft.org/v55/i07/

https://jeroen.r-universe.dev/RAppArmor

BugReports https://github.com/jeroen/RAppArmor/issues

OS_type unix

SystemRequirements linux (>= 3.0), libapparmor-dev

VignetteBuilder R.rsp

Suggests testthat, R.rsp

Depends unix (>= 1.4)

RoxygenNote 7.1.1

Roxygen list(markdown = TRUE)

Language en-US

Encoding UTF-8

Repository https://jeroen.r-universe.dev

RemoteUrl https://github.com/jeroen/rapparmor

1

https://www.jstatsoft.org/v55/i07/
https://jeroen.r-universe.dev/RAppArmor
https://github.com/jeroen/RAppArmor/issues


2 affinity

RemoteRef HEAD

RemoteSha 8897e9f2d8538072c31f3284b2fa009fa6d781b4

Contents
affinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
apparmor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
eval.secure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
unittests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Index 6

affinity Process Affinity

Description

Get/set the process’s CPU affinity mask. The affinity mask binds the process to specific core(s)
within the machine. Not supported on all systems, has_affinity() shows if this is available.

Usage

setaffinity(cpus = 1:ncores())

getaffinity_count()

getaffinity()

has_affinity()

ncores()

Arguments

cpus Which cpu cores to bind to: vector of integers between 1 and ncores()

Details

Setting a process affinity allows for restricting the process to only use certain cores in the machine.
The cores are indexed by the operating system as 1 to ncores(). Calling setaffinity() with no
arguments resets the process to use any of the available cores.

Note that setaffinity is different from setting r_limit values in the sense that it is not a one-way
process. An unprivileged user can change the process affinity to any value. In order to ’lock’ an
affinity value, one would have to manipulate Linux capability value for CAP_SYS_NICE.

References

SCHED_SETAFFINITY(2)

https://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
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Examples

## Not run:
# Current affinity
ncores()
getaffinity()
getaffinity_count()

# Restrict process to core number 1.
setaffinity(1)
getaffinity()

# Reset
setaffinity()
getaffinity()

## End(Not run)

apparmor Change hats

Description

A hat is a subprofile which name starts with a ’^’. The difference between hats and profiles is that
one can escape (revert) from the hat using the token. Hence this provides more limited security than
a profile.

Note that in order for this function to do its work, it needs read access to the attributes of the current
process. If aa_getcon fails with a permission denied error, it might actually mean that the current
process is being confined with a very restrictive profile.

Usage

aa_change_hat(subprofile, magic_token)

aa_revert_hat(magic_token)

aa_change_profile(profile)

aa_find_mountpoint()

aa_getcon()

aa_is_enabled()

aa_is_compiled()
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Arguments

subprofile character string identifying the subprofile (hat) name (without the "^")

magic_token a number that will be the key to revert out of the hat.

profile character string with the name of the profile.

Examples

## Not run:
aa_change_profile("testprofile");
aa_getcon();
test <- read.table("/etc/group");
aa_change_hat("testhat", 13337);
aa_getcon();
test <- read.table("/etc/group");
aa_revert_hat(13337);
test <- read.table("/etc/group");

## End(Not run)
## Not run:

test <- read.table("/etc/passwd");
aa_change_profile("testprofile");
aa_getcon();
test <- read.table("/etc/passwd");

## End(Not run)

eval.secure eval.secure

Description

The eval.secure function has moved into the unix package and is now an alias for unix::eval_safe.
Please switch over to this new function.

unittests RAppArmor unit tests

Description

This function loads the ’testthat’ package and runs a number of unit tests for RAppArmor. Note that
the tests assume that the main process is unconfined. Try running it both as root and as a regular
user to cover both cases.

Usage

unittests()
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Details

Occasionally, one or two tests might fail due to random fluctuations in available memory, cpu,
etc. If this happens, try running the tests again, possibly with less other programs running in the
background.
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