
Package: bcrypt (via r-universe)
September 5, 2024

Type Package

Title Blowfish Key Derivation and Password Hashing

Version 1.2

Description Bindings to the 'blowfish' password hashing algorithm
derived from the OpenBSD implementation.

URL https://github.com/jeroen/bcrypt

https://www.openbsd.org/papers/bcrypt-paper.pdf

BugReports https://github.com/jeroen/bcrypt/issues

License BSD_2_clause + file LICENSE

Imports openssl

RoxygenNote 6.1.1

Suggests spelling

Language en-US

Encoding UTF-8

Repository https://jeroen.r-universe.dev

RemoteUrl https://github.com/jeroen/bcrypt

RemoteRef HEAD

RemoteSha 49eb9da001cc6d3f118521d6e5221fb8909cfa6e

Contents

bcrypt . 2
pbkdf . 3

Index 4

1

https://github.com/jeroen/bcrypt
https://www.openbsd.org/papers/bcrypt-paper.pdf
https://github.com/jeroen/bcrypt/issues

2 bcrypt

bcrypt Bcrypt password hashing

Description

Bcrypt is used for secure password hashing. The main difference with regular digest algorithms
such as MD5 or SHA256 is that the bcrypt algorithm is specifically designed to be CPU intensive in
order to protect against brute force attacks. The exact complexity of the algorithm is configurable
via the log_rounds parameter. The interface is fully compatible with the Python one.

Usage

gensalt(log_rounds = 12, iv = openssl::rand_bytes(16))

hashpw(password, salt = gensalt())

checkpw(password, hash)

Arguments

log_rounds integer between 4 and 31 that defines the complexity of the hashing, increasing
the cost as 2^log_rounds.

iv init vector to randomize the salt

password the message (password) to encrypt

salt a salt generated with gensalt.

hash the previously generated bcrypt hash to verify

Details

The hashpw function calculates a hash from a password using a random salt. Validating the hash is
done by rehashing the password using the hash as a salt. The checkpw function is a simple wrapper
that does exactly this.

gensalt generates a random text salt for use with hashpw. The first few characters in the salt string
hold the bcrypt version number and value for log_rounds. The remainder stores 16 bytes of base64
encoded randomness for seeding the hashing algorithm.

Examples

Secret message as a string
passwd <- "supersecret"

Create the hash
hash <- hashpw(passwd)
hash

To validate the hash

pbkdf 3

identical(hash, hashpw(passwd, hash))

Or use the wrapper
checkpw(passwd, hash)

Use varying complexity:
hash11 <- hashpw(passwd, gensalt(11))
hash12 <- hashpw(passwd, gensalt(12))
hash13 <- hashpw(passwd, gensalt(13))

Takes longer to verify (or crack)
system.time(checkpw(passwd, hash11))
system.time(checkpw(passwd, hash12))
system.time(checkpw(passwd, hash13))

pbkdf Bcrypt PWKDF

Description

Password based key derivation function with bcrypt.

Usage

pbkdf(password, salt, rounds = 16L, size = 32L)

Arguments

password string or raw vector with password

salt raw vector with (usually 16) bytes

rounds number of hashing rounds

size desired length of the output key

Index

bcrypt, 2

checkpw (bcrypt), 2

gensalt (bcrypt), 2

hashpw (bcrypt), 2

pbkdf, 3

4

	bcrypt
	pbkdf
	Index

