Title: | Fast and Simple 'MongoDB' Client for R |
---|---|
Description: | High-performance MongoDB client based on 'mongo-c-driver' and 'jsonlite'. Includes support for aggregation, indexing, map-reduce, streaming, encryption, enterprise authentication, and GridFS. The online user manual provides an overview of the available methods in the package: <https://jeroen.github.io/mongolite/>. |
Authors: | Jeroen Ooms [aut, cre] , MongoDB, Inc [cph] (Bundled mongo-c-driver, see AUTHORS file) |
Maintainer: | Jeroen Ooms <[email protected]> |
License: | Apache License 2.0 |
Version: | 2.8.2 |
Built: | 2025-01-01 06:38:04 UTC |
Source: | https://github.com/jeroen/mongolite |
Connect to a GridFS database to search, read, write and delete files.
gridfs( db = "test", url = "mongodb://localhost", prefix = "fs", options = ssl_options() )
gridfs( db = "test", url = "mongodb://localhost", prefix = "fs", options = ssl_options() )
db |
name of database |
url |
address of the mongodb server in mongo connection string URI format |
prefix |
string to prefix the collection name |
options |
additional connection options such as SSL keys/certs. |
We support two interfaces for sending/receiving data from/to GridFS. The
fs$read()
and fs$write()
methods are the most flexible and can send data
from/to an R connection, such as a file, socket
or url. These methods support a progress counter and can be interrupted
if needed. These methods are recommended for reading or writing single files.
The fs$upload()
and fs$download()
methods on the other hand copy directly
between GridFS and your local disk. This API is vectorized so it can transfer
many files at once. However individual transfers cannot be interrupted and will
block R until completed. This API is only recommended to upload/download a large
number of small files.
Modifying files in GridFS is currently unsupported: uploading a file with the same name will generate a new file.
find(filter = "{}", options = "{}")
Search and list files in the GridFS
download(name, path = '.')
Download one or more files from GridFS to disk. Path may be an existing directory or vector of filenames equal to 'name'.
upload(path, name = basename(path), content_type = NULL, metadata = NULL)
Upload one or more files from disk to GridFS. Metadata is an optional JSON string.
read(name, con = NULL, progress = TRUE)
Reads a single file from GridFS into a writable R connection.
If con
is a string it is treated as a filepath; if it is NULL
then the output is buffered in memory and returned as a raw vector.
write(con, name, content_type = NULL, metadata = NULL, progress = TRUE)
Stream write a single file into GridFS from a readable R connection.
If con
is a string it is treated as a filepath; it may also be a raw vector containing the data to upload. Metadata is an optional JSON string.
remove(name)
Remove a single file from the GridFS
drop()
Removes the entire GridFS collection, including all files
# Upload a file to GridFS fs <- gridfs(url = "mongodb+srv://readwrite:[email protected]/test") input <- file.path(R.home('doc'), "html/logo.jpg") fs$upload(input, name = 'logo.jpg') # Download the file back to disk output <- file.path(tempdir(), 'logo1.jpg') fs$download('logo.jpg', output) # Or you can also stream it con <- file(file.path(tempdir(), 'logo2.jpg')) fs$read('logo.jpg', con) # Delete the file on the server fs$remove('logo.jpg') files <- c(input, file.path(tempdir(), c('logo1.jpg', 'logo2.jpg'))) hashes <- tools::md5sum(files) stopifnot(length(unique(hashes)) == 1) ## Not run: # Insert Binary Data fs <- gridfs() buf <- serialize(nycflights13::flights, NULL) fs$write(buf, 'flights') out <- fs$read('flights') flights <- unserialize(out$data) tmp <- file.path(tempdir(), 'flights.rds') fs$download('flights', tmp) flights2 <- readRDS(tmp) stopifnot(all.equal(flights, nycflights13::flights)) stopifnot(all.equal(flights2, nycflights13::flights)) # Show what we have fs$find() fs$drop() ## End(Not run)
# Upload a file to GridFS fs <- gridfs(url = "mongodb+srv://readwrite:[email protected]/test") input <- file.path(R.home('doc'), "html/logo.jpg") fs$upload(input, name = 'logo.jpg') # Download the file back to disk output <- file.path(tempdir(), 'logo1.jpg') fs$download('logo.jpg', output) # Or you can also stream it con <- file(file.path(tempdir(), 'logo2.jpg')) fs$read('logo.jpg', con) # Delete the file on the server fs$remove('logo.jpg') files <- c(input, file.path(tempdir(), c('logo1.jpg', 'logo2.jpg'))) hashes <- tools::md5sum(files) stopifnot(length(unique(hashes)) == 1) ## Not run: # Insert Binary Data fs <- gridfs() buf <- serialize(nycflights13::flights, NULL) fs$write(buf, 'flights') out <- fs$read('flights') flights <- unserialize(out$data) tmp <- file.path(tempdir(), 'flights.rds') fs$download('flights', tmp) flights2 <- readRDS(tmp) stopifnot(all.equal(flights, nycflights13::flights)) stopifnot(all.equal(flights2, nycflights13::flights)) # Show what we have fs$find() fs$drop() ## End(Not run)
Connect to a MongoDB collection. Returns a mongo connection object with methods listed below. Connections automatically get pooled between collection and gridfs objects to the same database.
mongo( collection = "test", db = "test", url = "mongodb://localhost", verbose = FALSE, options = ssl_options() )
mongo( collection = "test", db = "test", url = "mongodb://localhost", verbose = FALSE, options = ssl_options() )
collection |
name of collection |
db |
name of database |
url |
address of the mongodb server in mongo connection string URI format |
verbose |
emit some more output |
options |
additional connection options such as SSL keys/certs. |
This manual page is deliberately minimal, see the mongolite user manual for more details and worked examples.
Upon success returns a pointer to a collection on the server. The collection can be interfaced using the methods described below.
aggregate(pipeline = '{}', handler = NULL, pagesize = 1000, iterate = FALSE)
Execute a pipeline using the Mongo aggregation framework. Set iterate = TRUE
to return an iterator instead of data frame.
count(query = '{}')
Count the number of records matching a given query
. Default counts all records in collection.
disconnect(gc = TRUE)
Disconnect collection. The connection gets disconnected once the client is not used by collections in the pool.
distinct(key, query = '{}')
List unique values of a field given a particular query.
drop()
Delete entire collection with all data and metadata.
export(con = stdout(), bson = FALSE, query = '{}', fields = '{}', sort = '{"_id":1}')
Streams all data from collection to a connection
in jsonlines format (similar to mongoexport). Alternatively when bson = TRUE
it outputs the binary bson format (similar to mongodump).
find(query = '{}', fields = '{"_id" : 0}', sort = '{}', skip = 0, limit = 0, handler = NULL, pagesize = 1000)
Retrieve fields
from records matching query
. Default handler
will return all data as a single dataframe.
import(con, bson = FALSE)
Stream import data in jsonlines format from a connection
, similar to the mongoimport utility. Alternatively when bson = TRUE
it assumes the binary bson format (similar to mongorestore).
index(add = NULL, remove = NULL)
List, add, or remove indexes from the collection. The add
and remove
arguments can either be a field name or json object. Returns a dataframe with current indexes.
info()
Returns collection statistics and server info (if available).
insert(data, pagesize = 1000, stop_on_error = TRUE, ...)
Insert rows into the collection. Argument 'data' must be a data-frame, named list (for single record) or character vector with json strings (one string for each row). For lists and data frames, arguments in ...
get passed to jsonlite::toJSON
iterate(query = '{}', fields = '{"_id":0}', sort = '{}', skip = 0, limit = 0)
Runs query and returns iterator to read single records one-by-one.
mapreduce(map, reduce, query = '{}', sort = '{}', limit = 0, out = NULL, scope = NULL)
Performs a map reduce query. The map
and reduce
arguments are strings containing a JavaScript function. Set out
to a string to store results in a collection instead of returning.
remove(query = "{}", just_one = FALSE)
Remove record(s) matching query
from the collection.
rename(name, db = NULL)
Change the name or database of a collection. Changing name is cheap, changing database is expensive.
replace(query, update = '{}', upsert = FALSE)
Replace matching record(s) with value of the update
argument.
run(command = '{"ping": 1}', simplify = TRUE)
Run a raw mongodb command on the database. If the command returns data, output is simplified by default, but this can be disabled.
update(query, update = '{"$set":{}}', upsert = FALSE, multiple = FALSE)
Modify fields of matching record(s) with value of the update
argument.
Jeroen Ooms (2014). The jsonlite
Package: A Practical and Consistent Mapping Between JSON Data and R Objects. arXiv:1403.2805. https://arxiv.org/abs/1403.2805
# Connect to demo server con <- mongo("mtcars", url = "mongodb+srv://readwrite:[email protected]/test") if(con$count() > 0) con$drop() con$insert(mtcars) stopifnot(con$count() == nrow(mtcars)) # Query data mydata <- con$find() stopifnot(all.equal(mydata, mtcars)) con$drop() # Automatically disconnect when connection is removed rm(con) gc() ## Not run: # dplyr example library(nycflights13) # Insert some data m <- mongo(collection = "nycflights") m$drop() m$insert(flights) # Basic queries m$count('{"month":1, "day":1}') jan1 <- m$find('{"month":1, "day":1}') # Sorting jan1 <- m$find('{"month":1,"day":1}', sort='{"distance":-1}') head(jan1) # Sorting on large data requires index m$index(add = "distance") allflights <- m$find(sort='{"distance":-1}') # Select columns jan1 <- m$find('{"month":1,"day":1}', fields = '{"_id":0, "distance":1, "carrier":1}') # List unique values m$distinct("carrier") m$distinct("carrier", '{"distance":{"$gt":3000}}') # Tabulate m$aggregate('[{"$group":{"_id":"$carrier", "count": {"$sum":1}, "average":{"$avg":"$distance"}}}]') # Map-reduce (binning) hist <- m$mapreduce( map = "function(){emit(Math.floor(this.distance/100)*100, 1)}", reduce = "function(id, counts){return Array.sum(counts)}" ) # Stream jsonlines into a connection tmp <- tempfile() m$export(file(tmp)) # Remove the collection m$drop() # Import from jsonlines stream from connection dmd <- mongo("diamonds") dmd$import(url("http://jeroen.github.io/data/diamonds.json")) dmd$count() # Export dmd$drop() ## End(Not run)
# Connect to demo server con <- mongo("mtcars", url = "mongodb+srv://readwrite:[email protected]/test") if(con$count() > 0) con$drop() con$insert(mtcars) stopifnot(con$count() == nrow(mtcars)) # Query data mydata <- con$find() stopifnot(all.equal(mydata, mtcars)) con$drop() # Automatically disconnect when connection is removed rm(con) gc() ## Not run: # dplyr example library(nycflights13) # Insert some data m <- mongo(collection = "nycflights") m$drop() m$insert(flights) # Basic queries m$count('{"month":1, "day":1}') jan1 <- m$find('{"month":1, "day":1}') # Sorting jan1 <- m$find('{"month":1,"day":1}', sort='{"distance":-1}') head(jan1) # Sorting on large data requires index m$index(add = "distance") allflights <- m$find(sort='{"distance":-1}') # Select columns jan1 <- m$find('{"month":1,"day":1}', fields = '{"_id":0, "distance":1, "carrier":1}') # List unique values m$distinct("carrier") m$distinct("carrier", '{"distance":{"$gt":3000}}') # Tabulate m$aggregate('[{"$group":{"_id":"$carrier", "count": {"$sum":1}, "average":{"$avg":"$distance"}}}]') # Map-reduce (binning) hist <- m$mapreduce( map = "function(){emit(Math.floor(this.distance/100)*100, 1)}", reduce = "function(id, counts){return Array.sum(counts)}" ) # Stream jsonlines into a connection tmp <- tempfile() m$export(file(tmp)) # Remove the collection m$drop() # Import from jsonlines stream from connection dmd <- mongo("diamonds") dmd$import(url("http://jeroen.github.io/data/diamonds.json")) dmd$count() # Export dmd$drop() ## End(Not run)
Get and set global client options. Calling with NULL
parameters returns current
values without modifying.
mongo_options(log_level = NULL, bigint_as_char = NULL, date_as_char = NULL)
mongo_options(log_level = NULL, bigint_as_char = NULL, date_as_char = NULL)
log_level |
integer between 0 and 6 or |
bigint_as_char |
logical: parse int64 as strings instead of double. |
date_as_char |
logical: parse UTC datetime as strings instead of POSIXct. |
Setting log_level to 0 suppresses critical warnings and messages, while 6 is most verbose and displays all debugging information. Possible values for level are:
0
: error
1
: critical
2
: warning
3
: message
4
: info (default)
5
: debug
6
: trace
Note that setting it below 2 will suppress important warnings and setting below 1 will suppress critical errors (not recommended). The default is 4.
The initial 4 bytes of a MongoDB OID contain a timestamp value, representing the ObjectId creation, measured in seconds since the Unix epoch.
oid_to_timestamp(oid)
oid_to_timestamp(oid)
oid |
string or raw value with document oid |
oid_to_timestamp('5349b4ddd2781d08c09890f3')
oid_to_timestamp('5349b4ddd2781d08c09890f3')
Reads BSON data from a mongoexport
dump file directly into R (if it can fit
in memory). This utility does not attempt to convert result into one big single
data.frame: the output is always a vector of length equal to total number of
documents in the collection.
read_bson(file, as_json = FALSE, simplify = TRUE, verbose = interactive())
read_bson(file, as_json = FALSE, simplify = TRUE, verbose = interactive())
file |
path or url to a bson file |
as_json |
read data into json strings instead of R lists. |
simplify |
should nested data get simplified into atomic vectors and
dataframes where possible? Only used for |
verbose |
print some progress output while reading |
It is enabled by default to simplify the individual data documents using the same rules as jsonlite. This converts nested lists into atomic vectors and data frames when possible, which makes data easier to work with in R.
An alternative to this function is to import your BSON file into a local mongodb server using the mongo$import() function. This requires little memory and once data is in mongodb you can easily query and modify it.
diamonds <- read_bson("https://jeroen.github.io/data/diamonds.bson") length(diamonds)
diamonds <- read_bson("https://jeroen.github.io/data/diamonds.bson") length(diamonds)
Set SSL options to connect to the MongoDB server.
ssl_options( cert = NULL, key = cert, ca = NULL, ca_dir = NULL, crl_file = NULL, allow_invalid_hostname = NULL, weak_cert_validation = NULL )
ssl_options( cert = NULL, key = cert, ca = NULL, ca_dir = NULL, crl_file = NULL, allow_invalid_hostname = NULL, weak_cert_validation = NULL )
cert |
path to PEM file with client certificate, or a certificate as
returned by |
key |
path to PEM file with private key from the above certificate, or
a key as returned by |
ca |
a certificate authority PEM file |
ca_dir |
directory with CA files |
crl_file |
file with revocations |
allow_invalid_hostname |
do not verify hostname on server certificate |
weak_cert_validation |
disable certificate verification |