
Package: sys (via r-universe)
November 2, 2024

Type Package

Title Powerful and Reliable Tools for Running System Commands in R

Version 3.4.3

Description Drop-in replacements for the base system2() function with
fine control and consistent behavior across platforms. Supports
clean interruption, timeout, background tasks, and streaming
STDIN / STDOUT / STDERR over binary or text connections.
Arguments on Windows automatically get encoded and quoted to
work on different locales.

License MIT + file LICENSE

URL https://jeroen.r-universe.dev/sys

BugReports https://github.com/jeroen/sys/issues

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Suggests unix (>= 1.4), spelling, testthat

Language en-US

Repository https://jeroen.r-universe.dev

RemoteUrl https://github.com/jeroen/sys

RemoteRef HEAD

RemoteSha d2353a15e3987c93724e5c86ff7bed26b7267a3e

Contents
as_text . 2
exec . 2
exec_r . 5
quote . 6
sys-deprecated . 6

Index 7

1

https://jeroen.r-universe.dev/sys
https://github.com/jeroen/sys/issues

2 exec

as_text Convert Raw to Text

Description

Parses a raw vector as lines of text. This is similar to charToRaw but splits output by (platform
specific) linebreaks and allows for marking output with a given encoding.

Usage

as_text(x, ...)

Arguments

x vector to be converted to text

... parameters passed to readLines such as encoding or n

See Also

base::charToRaw

exec Running System Commands

Description

Powerful replacements for system2 with support for interruptions, background tasks and fine grained
control over STDOUT / STDERR binary or text streams.

Usage

exec_wait(
cmd,
args = NULL,
std_out = stdout(),
std_err = stderr(),
std_in = NULL,
timeout = 0

)

exec_background(
cmd,
args = NULL,
std_out = TRUE,
std_err = TRUE,

exec 3

std_in = NULL
)

exec_internal(cmd, args = NULL, std_in = NULL, error = TRUE, timeout = 0)

exec_status(pid, wait = TRUE)

Arguments

cmd the command to run. Either a full path or the name of a program on the PATH. On
Windows this is automatically converted to a short path using Sys.which, unless
wrapped in I().

args character vector of arguments to pass. On Windows these automatically get
quoted using windows_quote, unless the value is wrapped in I().

std_out if and where to direct child process STDOUT. Must be one of TRUE, FALSE, file-
name, connection object or callback function. See section on Output Streams
below for details.

std_err if and where to direct child process STDERR. Must be one of TRUE, FALSE, file-
name, connection object or callback function. See section on Output Streams
below for details.

std_in file path to map std_in

timeout maximum time in seconds

error automatically raise an error if the exit status is non-zero.

pid integer with a process ID

wait block until the process completes

Details

Each value within the args vector will automatically be quoted when needed; you should not quote
arguments yourself. Doing so anyway could lead to the value being quoted twice on some platforms.

The exec_wait function runs a system command and waits for the child process to exit. When the
child process completes normally (either success or error) it returns with the program exit code.
Otherwise (if the child process gets aborted) R raises an error. The R user can interrupt the program
by sending SIGINT (press ESC or CTRL+C) in which case the child process tree is properly termi-
nated. Output streams STDOUT and STDERR are piped back to the parent process and can be sent to a
connection or callback function. See the section on Output Streams below for details.

The exec_background function starts the program and immediately returns the PID of the child
process. This is useful for running a server daemon or background process. Because this is non-
blocking, std_out and std_out can only be TRUE/FALSE or a file path. The state of the process can
be checked with exec_status which returns the exit status, or NA if the process is still running. If
wait = TRUE then exec_status blocks until the process completes (but can be interrupted). The
child can be killed with tools::pskill.

The exec_internal function is a convenience wrapper around exec_wait which automatically
captures output streams and raises an error if execution fails. Upon success it returns a list with
status code, and raw vectors containing stdout and stderr data (use as_text for converting to text).

4 exec

Value

exec_background returns a pid. exec_wait returns an exit code. exec_internal returns a list
with exit code, stdout and stderr strings.

Output Streams

The std_out and std_err parameters are used to control how output streams of the child are
processed. Possible values for both foreground and background processes are:

• TRUE: print child output in R console
• FALSE: suppress output stream
• string: name or path of file to redirect output

In addition the exec_wait function also supports the following std_out and std_err types:

• connection a writable R connection object such as stdout or stderr
• function: callback function with one argument accepting a raw vector (use as_text to convert

to text).

When using exec_background with std_out = TRUE or std_err = TRUE on Windows, separate
threads are used to print output. This works in RStudio and RTerm but not in RGui because the
latter has a custom I/O mechanism. Directing output to a file is usually the safest option.

See Also

Base system2 and pipe provide other methods for running a system command with output.

Other sys: exec_r

Examples

Run a command (interrupt with CTRL+C)
status <- exec_wait("date")

Capture std/out
out <- exec_internal("date")
print(out$status)
cat(as_text(out$stdout))

if(nchar(Sys.which("ping"))){

Run a background process (daemon)
pid <- exec_background("ping", "localhost")

Kill it after a while
Sys.sleep(2)
tools::pskill(pid)

Cleans up the zombie proc
exec_status(pid)
rm(pid)
}

exec_r 5

exec_r Execute R from R

Description

Convenience wrappers for exec_wait and exec_internal that shell out to R itself: R.home("bin/R").

Usage

r_wait(
args = "--vanilla",
std_out = stdout(),
std_err = stderr(),
std_in = NULL

)

r_internal(args = "--vanilla", std_in = NULL, error = TRUE)

r_background(args = "--vanilla", std_out = TRUE, std_err = TRUE, std_in = NULL)

Arguments

args command line arguments for R

std_out if and where to direct child process STDOUT. Must be one of TRUE, FALSE, file-
name, connection object or callback function. See section on Output Streams
below for details.

std_err if and where to direct child process STDERR. Must be one of TRUE, FALSE, file-
name, connection object or callback function. See section on Output Streams
below for details.

std_in a file to send to stdin, usually an R script (see examples).

error automatically raise an error if the exit status is non-zero.

Details

This is a simple but robust way to invoke R commands in a separate process. Use the callr package
if you need more sophisticated control over (multiple) R process jobs.

See Also

Other sys: exec

Examples

Hello world
r_wait("--version")

Run some code

https://cran.r-project.org/package=callr

6 sys-deprecated

r_wait(c('--vanilla', '-q', '-e', 'sessionInfo()'))

Run a script via stdin
tmp <- tempfile()
writeLines(c("x <- rnorm(100)", "mean(x)"), con = tmp)
r_wait(std_in = tmp)

quote Quote arguments on Windows

Description

Quotes and escapes shell arguments when needed so that they get properly parsed by most Windows
programs. This function is used internally to automatically quote system commands, the user should
normally not quote arguments manually.

Usage

windows_quote(args)

Arguments

args character vector with arguments

Details

Algorithm is ported to R from libuv.

sys-deprecated Deprecated functions

Description

These functions have moved into the unix package. Please update your references.

Usage

eval_safe(...)

eval_fork(...)

Arguments

... see respective functions in the unix package

https://github.com/libuv/libuv/blob/v1.23.0/src/win/process.c#L454-L524

Index

∗ sys
exec, 2
exec_r, 5

as_text, 2, 3, 4

base::charToRaw, 2

charToRaw, 2
connection, 4

eval_fork (sys-deprecated), 6
eval_safe (sys-deprecated), 6
exec, 2, 5
exec_background (exec), 2
exec_internal, 5
exec_internal (exec), 2
exec_r, 4, 5
exec_status (exec), 2
exec_wait, 5
exec_wait (exec), 2

I(), 3

pipe, 4

quote, 6

r_background (exec_r), 5
r_internal (exec_r), 5
r_wait (exec_r), 5
readLines, 2

stderr, 4
stdout, 4
sys (exec), 2
sys-deprecated, 6
Sys.which, 3
system2, 2, 4

tools::pskill, 3

windows_quote, 3
windows_quote (quote), 6

7

	as_text
	exec
	exec_r
	quote
	sys-deprecated
	Index

